Title : ( An investigation into the flexural and drawing behaviors of GFRP-based fiber–metal laminate )
Authors: ali rajabi , Mehran Kadkhodayan , Sadegh Ghanei ,Abstract
Fiber–metal laminates (FMLs) are advanced composite materials that consist of bonded thin metal sheets and fiber-reinforced composite layers. In this article, mechanical behavior of a thermoplastic-based FML is investigated, which is composed of glass-fiber-reinforced polypropylene (GFRP) laminate and aluminum AA1200-O as the core and skin layers, respectively. Engineering constants of the composite laminate were achieved using Timoshenko’s beam theory, flexural and tensile test results. Finite element simulations of the GFRP-based FML were performed to predict the behavior of this material in three-point bending and deep drawing tests. Some experimental verification tests were conducted to prove the reliability of results in the FE analysis of the FML. Comparison of the results shows an excellent correlation between the FE analysis and experimental tests.
Keywords
, Fiber–metal laminate, finite element analysis, mechanical behavior, thermoplastic@article{paperid:1068474,
author = {Rajabi, Ali and Kadkhodayan, Mehran and Ghanei, Sadegh},
title = {An investigation into the flexural and drawing behaviors of GFRP-based fiber–metal laminate},
journal = {Mechanics of Advanced Materials and Structures},
year = {2018},
volume = {25},
number = {10},
month = {May},
issn = {1537-6494},
pages = {805--812},
numpages = {7},
keywords = {Fiber–metal laminate; finite element analysis; mechanical behavior; thermoplastic},
}
%0 Journal Article
%T An investigation into the flexural and drawing behaviors of GFRP-based fiber–metal laminate
%A Rajabi, Ali
%A Kadkhodayan, Mehran
%A Ghanei, Sadegh
%J Mechanics of Advanced Materials and Structures
%@ 1537-6494
%D 2018