Linear and Multilinear Algebra, ( ISI ), Volume (66), No (9), Year (2018-10) , Pages (1799-1818)

Title : ( Solvability of the matrix inequality AXA^*+BX^*B^*\geq C )

Authors: mehdi vosough , Mohammad Sal Moslehian ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

‎In this paper‎, ‎we first investigate the matrix equation $ AXB+CYD=G $‎, ‎where $ A‎, ‎B‎, ‎C‎, ‎D $ and $ G $ are arbitrary matrices in a new fashion‎. ‎Then‎, ‎we establish some necessary and sufficient conditions for the existence of a solution of $ AXA^*+BX^*B^*\geq C $‎, ‎where $ A‎, ‎B $ are arbitrary matrices and $C $ is a Hermitian matrix‎. ‎In the special case when $ B=A $‎, ‎we determine the general solution of $ A(X+X^*)A^*\geq C $‎, ‎where $A $ is an arbitrary matrix and $ C $ is a Hermitian matrix‎.

Keywords

Matrix equation; matrix inequality; L\"{o}wner partial ordering; generalized inverse
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1069306,
author = {Vosough, Mehdi and Sal Moslehian, Mohammad},
title = {Solvability of the matrix inequality AXA^*+BX^*B^*\geq C},
journal = {Linear and Multilinear Algebra},
year = {2018},
volume = {66},
number = {9},
month = {October},
issn = {0308-1087},
pages = {1799--1818},
numpages = {19},
keywords = {Matrix equation; matrix inequality; L\"{o}wner partial ordering; generalized inverse},
}

[Download]

%0 Journal Article
%T Solvability of the matrix inequality AXA^*+BX^*B^*\geq C
%A Vosough, Mehdi
%A Sal Moslehian, Mohammad
%J Linear and Multilinear Algebra
%@ 0308-1087
%D 2018

[Download]