Control and Optimization in Applied Mathematics, Volume (4), No (1), Year (2020-10) , Pages (53-63)

Title : ( Global Forcing Number for Maximal Matchings under Graph Operations )

Authors: Mostafa Tavakoli ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Let $S= \\\\{e_1,\\\\,e_2‎, ‎\\\\ldots,\\\\,e_m\\\\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\\\\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\\\\,d_2,\\\\ldots,\\\\,d_m)$‎, ‎where $d_i=1$ if $e_i\\\\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\\\\in\\\\{1,\\\\ldots‎ , ‎k\\\\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $r_e(M_1|S)\\\\neq r_e(M_2|S)$ for any two maximal matchings $M_1$ and $M_2$ of $G$‎. ‎A global forcing set for maximal matchings of $G$ with minimum cardinality is called‎ ‎a minimum global forcing set for maximal matchings‎, ‎and its cardinality‎, ‎denoted by $\\\\varphi_{gm}$‎, ‎is the‎ ‎global forcing number (GFN for short) for maximal matchings‎. ‎Similarly‎, ‎for an ordered subset $F = \\\\{v_1,\\\\,v_2‎, ‎\\\\ldots,\\\\,v_k\\\\}$ of $V(G)$‎, ‎the $F$-representation of a vertex set $I\\\\subseteq V(G)$ with respect to $F$ is the‎ ‎vector $r(I|F) = (d_1,\\\\,d_2,\\\\ldots,\\\\,d_k)$‎, ‎where $d_i=1$ if $v_i\\\\in I$ and‎ ‎$d_i=0$ otherwise‎, ‎for each $i\\\\in\\\\{1,\\\\ldots‎ , ‎k\\\\}$‎. ‎We say $F$ is a global forcing set for independent dominatings of $G$‎ ‎if $r(D_1|F)\\\\neq r(D_2|F)$ for any two maximal independent dominating sets $D_1$ and $D_2$ of $G$‎. ‎A global forcing set for independent dominatings of $G$ with minimum cardinality is called‎ ‎a minimum global forcing set for independent dominatings‎, ‎and its cardinality‎, ‎denoted by $\\\\varphi_{gi}$‎, ‎is the‎ ‎GFN for independent dominatings‎. ‎In this paper we study the GFN for maximal matchings‎ ‎under several types of graph products‎. ‎Also‎, ‎we present some upper bounds for this invariant‎. ‎Moreover‎, ‎we present some bounds for $\\\\varphi_{gm}$ of some well-known graphs‎.

Keywords

, Global forcing set‎, ‎Global forcing number‎, ‎Maximal matching‎, ‎Maximal independent dominating‎, ‎Product graph.
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1081887,
author = {Tavakoli, Mostafa},
title = {Global Forcing Number for Maximal Matchings under Graph Operations},
journal = {Control and Optimization in Applied Mathematics},
year = {2020},
volume = {4},
number = {1},
month = {October},
issn = {2383-3130},
pages = {53--63},
numpages = {10},
keywords = {Global forcing set‎; ‎Global forcing number‎; ‎Maximal matching‎; ‎Maximal independent dominating‎; ‎Product graph.},
}

[Download]

%0 Journal Article
%T Global Forcing Number for Maximal Matchings under Graph Operations
%A Tavakoli, Mostafa
%J Control and Optimization in Applied Mathematics
%@ 2383-3130
%D 2020

[Download]