Optimization Letters, ( ISI ), Volume (15), No (6), Year (2020-11) , Pages (1993-2003)

Title : ( Edge metric dimensions via hierarchical product and integer linear programming )

Authors: Sandi Klavzar , Mostafa Tavakoli ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

‎If $S=\\\\{v_1,\\\\ldots‎, ‎v_k\\\\}$ is an ordered subset of vertices of a connected graph $G$ and $e$ is an edge of $G$‎, ‎then the vector $r_G(e|S) = (d_G(v_1,e)‎, ‎\\\\ldots‎, ‎d_G(v_k,e))$ is the edge metric $S$-representation of $e$‎. ‎If the vertices of $G$ have pairwise different edge metric $S$-representations‎, ‎then $S$ is an edge metric generator for $G$‎. ‎The cardinality of a smallest edge metric generator is the edge metric dimension ${\\\\rm edim}(G)$ of $G$‎. ‎A general sharp upper bound on the edge metric dimension of hierarchical products $G(U)\\\\sqcap H$ is proved‎. ‎Exact formula is derived for the case when $|U| = 1$‎. ‎An integer linear programming model for computing the edge metric dimension is proposed‎. ‎Several examples are provided which demonstrate how these two methods can be applied to obtain the edge metric dimensions of some applicable graphs‎.

Keywords

metric dimension; edge metric dimension; hierarchical product; integer linear programming; molecular graph‎
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1082222,
author = {Sandi Klavzar and Tavakoli, Mostafa},
title = {Edge metric dimensions via hierarchical product and integer linear programming},
journal = {Optimization Letters},
year = {2020},
volume = {15},
number = {6},
month = {November},
issn = {1862-4472},
pages = {1993--2003},
numpages = {10},
keywords = {metric dimension; edge metric dimension; hierarchical product; integer linear programming; molecular graph‎},
}

[Download]

%0 Journal Article
%T Edge metric dimensions via hierarchical product and integer linear programming
%A Sandi Klavzar
%A Tavakoli, Mostafa
%J Optimization Letters
%@ 1862-4472
%D 2020

[Download]