Complex Analysis and Operator Theory, Volume (16), No (1), Year (2021-11)

Title : ( Vector-Valued Reproducing Kernel Hilbert $$C^*$$-Modules )

Authors: Mohammad Sal Moslehian ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

The aim of this paper is to present a unified framework in the setting of Hilbert C∗-modules for the scalar- and vector-valued reproducing kernel Hilbert spaces and C∗-valued reproducing kernel spaces. We investigate conditionally negative definite kernels with values in the C∗-algebra of adjointable operators acting on a Hilbert C∗-module. In addition, we show that there exists a two-sided connection between positive definite kernels and reproducing kernel Hilbert C∗-modules. Furthermore, we explore some conditions under which a function is in the reproducing kernel module and present an interpolation theorem. Moreover, we study some basic properties of the so-called relative reproducing kernel Hilbert C∗-modules and give a characterization of dual modules. Among other things, we prove that every conditionally negative definite kernel gives us a reproducing kernel Hilbert C∗-module and a certain map. Several examples illustrate our investigation.

Keywords

, Conditionally negative definite kernel Reproducing kernel Hilbert module Hilbert C∗, module Kolmogorov decomposition
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1087637,
author = {Sal Moslehian, Mohammad},
title = {Vector-Valued Reproducing Kernel Hilbert $$C^*$$-Modules},
journal = {Complex Analysis and Operator Theory},
year = {2021},
volume = {16},
number = {1},
month = {November},
issn = {1661-8254},
keywords = {Conditionally negative definite kernel Reproducing kernel Hilbert module Hilbert C∗-module Kolmogorov decomposition},
}

[Download]

%0 Journal Article
%T Vector-Valued Reproducing Kernel Hilbert $$C^*$$-Modules
%A Sal Moslehian, Mohammad
%J Complex Analysis and Operator Theory
%@ 1661-8254
%D 2021

[Download]