Title : ( Combustion, emission and radiative performance of diffusion flame: effect of graphene nanoparticles )
Authors: Zohreh Shams , Mohammad Moghiman , Mojtaba Baghban , S. H. Pourhoseini ,Abstract
The present work is an experimental study on the effect of graphene NPs on the combustion, emission and radiative char- acteristics of diesel fuel. The hot plate experiment results show that the ignition probability of the diesel fuel droplets significantly increases in the presence of graphene nanoparticles. By adding graphene NPs, the ignition delay of diesel fuel droplets decreases up to 13%. The fuels were burned in an oil burner subsequently, and flame temperature, luminous and thermal radiation and emissions were measured. The maximum flame temperature increases in the presence of graphene NPs. After the maximum temperature point, the lower temperature of the nanofuel flames compared with pure diesel is due to the higher burning rate of nanofuels. As revealed by the measurements, thermal efficiency increases over the base fuel by 10.1% and 12.7% for the mass fraction of 0.05% and 0.1%, respectively. NO emissions do not change significantly in the presence of graphene NPs. More CO is produced by adding graphene nanoparticles. Also, the addition of graphene NPs considerably increases the radiation heat flux. The thermal and luminous radiation increases by about 7% and 9.67% for diesel fuel containing 0.1% graphene NPs.
Keywords
Nonofuel · Ignition probability · Thermal efficiency · Pollutant emission · Luminous radiation · Thermal radiation@article{paperid:1094582,
author = {Shams, Zohreh and Moghiman, Mohammad and Mojtaba Baghban and S. H. Pourhoseini},
title = {Combustion, emission and radiative performance of diffusion flame: effect of graphene nanoparticles},
journal = {Applied Nanoscience},
year = {2023},
volume = {13},
number = {9},
month = {September},
issn = {2190-5509},
pages = {6237--6247},
numpages = {10},
keywords = {Nonofuel · Ignition probability · Thermal efficiency · Pollutant emission · Luminous radiation · Thermal
radiation},
}
%0 Journal Article
%T Combustion, emission and radiative performance of diffusion flame: effect of graphene nanoparticles
%A Shams, Zohreh
%A Moghiman, Mohammad
%A Mojtaba Baghban
%A S. H. Pourhoseini
%J Applied Nanoscience
%@ 2190-5509
%D 2023