Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, Volume (66), No (3), Year (2022-12) , Pages (337-354)

Title : ( Zp(Zp + uZp + u2Zp)-additive cyclic codes )

Authors: Arazgol ghajari enjehbron , Kazem Khashyarmanesh ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Let R = Zp + uZp + u 2Zp be a commutative ring with u 3 = u and p is an odd prime. The ZpR-additive cyclic codes can be considered as R[x]-submodules of Zp[x] × R[x] , for some positive integers α and β. In this paper, we study the algebraic structure of ZpR-additive cyclic codes of length (α, β). To do this, we determine their generator polynomials and minimal generating sets. Moreover, we discuss the duality of the ZpR-additive cyclic codes and obtain their generator polynomials. We also study the structure of additive constacyclic codes and quantum codes over ZpR.

Keywords

, Additive cyclic codes, additive constacyclic codes,
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1102238,
author = {Ghajari Enjehbron, Arazgol and Khashyarmanesh, Kazem},
title = {Zp(Zp + uZp + u2Zp)-additive cyclic codes},
journal = {Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie},
year = {2022},
volume = {66},
number = {3},
month = {December},
issn = {1220-3874},
pages = {337--354},
numpages = {17},
keywords = {Additive cyclic codes; additive constacyclic codes;},
}

[Download]

%0 Journal Article
%T Zp(Zp + uZp + u2Zp)-additive cyclic codes
%A Ghajari Enjehbron, Arazgol
%A Khashyarmanesh, Kazem
%J Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie
%@ 1220-3874
%D 2022

[Download]