Title : ( Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation )
Authors: Seyyed Mohammad Ali Hashemi , Hassan Haji Kazemi , Abbas Karamodin ,Abstract
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definition and optimization of nonlinear systems. The proposed model involves structure identification and also a parameter tuning phase to be adapted for modeling of an arbitrary system. The proposed structure and the learning algorithm arevalidated by comparing with some other most commonly used alternatives. The simulation shows the performance and adaptability of the proposed model in approximating multivariate nonlinear mathematics functions.
Keywords
Wavelet neural network; Evolutionary learning algorithm; Nonlinear function approximation.@article{paperid:1052625,
author = {Hashemi, Seyyed Mohammad Ali and Haji Kazemi, Hassan and Karamodin, Abbas},
title = {Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation},
journal = {International Journal of Engineering},
year = {2015},
volume = {28},
number = {10},
month = {December},
issn = {1025-2495},
pages = {1423--1429},
numpages = {6},
keywords = {Wavelet neural network; Evolutionary learning algorithm; Nonlinear function approximation.},
}
%0 Journal Article
%T Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
%A Hashemi, Seyyed Mohammad Ali
%A Haji Kazemi, Hassan
%A Karamodin, Abbas
%J International Journal of Engineering
%@ 1025-2495
%D 2015