Title : ( More on operator monotone and operator convex functions of several variables )
Authors: Hamed Najafi ,Abstract
Let $C_1,C_2,\ldots,C_k$ be positive matrices in $M_n$ and $f$ be a continuous real-valued function on $[0,\infty)$. In addition, consider $\Phi$ as a positive linear functional on $M_n$ and define $$\phi(t_1,t_2,t_3,\ldots,t_k)=\Phi\left(f(t_1C_1+t_2C_2+t_3C_3+\ldots+t_kC_k)\right),$$ as a $k$ variables continuous function on $[0,\infty) \times \ldots \times [0,\infty)$. In this paper, we show that if $f$ is an operator convex function of order $mn$, then $\phi$ is a $k$ variables operator convex function of order $(n_1,\ldots,n_k)$ such that $m=n_1 n_2\ldots n_k$. Also, if $f$ is an operator monotone function of order $n^{k+1}$, then $\phi$ is a $k$ variables operator monotone function of order $n$. In particular, if $f$ is a non-negative operator decreasing function on $[0,\infty)$, then the function $t\rightarrow \Phi\left(f(A+tB)\right)$ is an operator decreasing and can be written as a Laplace transform of a positive measure.
Keywords
Operator monotone functions; Operator convex functions; BMV conjecture; Laplace transform@article{paperid:1063452,
author = {Najafi, Hamed},
title = {More on operator monotone and operator convex functions of several variables},
journal = {Linear Algebra and its Applications},
year = {2017},
volume = {532},
number = {1},
month = {June},
issn = {0024-3795},
pages = {127--139},
numpages = {12},
keywords = {Operator monotone functions; Operator convex functions; BMV conjecture; Laplace transform},
}
%0 Journal Article
%T More on operator monotone and operator convex functions of several variables
%A Najafi, Hamed
%J Linear Algebra and its Applications
%@ 0024-3795
%D 2017