Title : ( THE FARTHEST POINT PROBLEM IN NON-ARCHIMEDEAN NORMED SPACES )
Authors: Mohammad Sal Moslehian , Asadollah Niknam , - - ,Access to full-text not allowed by authors
Abstract
We study the farthest point mapping in non-Archimedean normed spaces. We prove that a uniquely remotal subset M in a non-Archimedean normed space X is singleton if for some Chebyshev center c and some jj < 1 the equality qM(c+(1
Keywords
, Farthest point, Chebyshev center, uniquely remotal set, normed space, non-Archimedean normed space, non-Archimedean eld.@article{paperid:1010750,
author = {Sal Moslehian, Mohammad and Niknam, Asadollah and -, -},
title = {THE FARTHEST POINT PROBLEM IN NON-ARCHIMEDEAN NORMED SPACES},
journal = {Mathematica},
year = {2009},
volume = {51},
number = {1},
month = {May},
issn = {1222-9016},
pages = {55--61},
numpages = {6},
keywords = {Farthest point; Chebyshev center; uniquely remotal set; normed
space; non-Archimedean normed space; non-Archimedean eld.},
}
%0 Journal Article
%T THE FARTHEST POINT PROBLEM IN NON-ARCHIMEDEAN NORMED SPACES
%A Sal Moslehian, Mohammad
%A Niknam, Asadollah
%A -, -
%J Mathematica
%@ 1222-9016
%D 2009