Title : ( A characterization of inner product spaces )
Authors: John M. Rassias , Mohammad Sal Moslehian ,Access to full-text not allowed by authors
Abstract
In this paper we present a new criterion on characterization of real inner product spaces. We conclude that a real normed space $(X, \|\cdot\|)$ is an inner product space if $$\sum_{\varepsilon_i \in \{-1,1\}} \left\|x_1 + \sum_{i=2}^k\varepsilon_ix_i\right\|^2=\sum_{\varepsilon_i \in \{-1,1\}} \left(\|x_1\| + \sum_{i=2}^k\varepsilon_i\|x_i\|\right)^2\,,$$ for some positive integer $k\geq 2$ and all $x_1, \ldots, x_k \in X$. Conversely, if $(X, \|\cdot\|)$ is an inner product space, then the equality above holds for all $k\geq 2$ and all $x_1, \ldots, x_k \in X$.
Keywords
, inner product space; Euler, , Lagrange identity; Day's condition; normed space; characterization; operator@article{paperid:1022246,
author = {John M. Rassias and Sal Moslehian, Mohammad},
title = {A characterization of inner product spaces},
journal = {Kochi Journal of Mathematics},
year = {2011},
volume = {6},
number = {1},
month = {March},
issn = {1880-5515},
pages = {101--107},
numpages = {6},
keywords = {inner product space; Euler--Lagrange identity; Day's
condition; normed space; characterization; operator},
}
%0 Journal Article
%T A characterization of inner product spaces
%A John M. Rassias
%A Sal Moslehian, Mohammad
%J Kochi Journal of Mathematics
%@ 1880-5515
%D 2011