Title : ( SHIFT INVARIANT SPACES FOR LOCAL FIELDS )
Authors: A. Ahmadi , A. Askari Hemmat , Reihaneh Raisi Tousi ,Access to full-text not allowed by authors
Abstract
This paper is an investigation of shift invariant subspaces of L2(G), where G is a locally compact abelian group, or in general a local field, with a compact open subgroup. In this paper we state necessary and sufficient conditions for shifts of an element of L2(G) to be an orthonormal system or a Parseval frame. Also we show that each shift invariant subspace of L2(G) is a direct sum of principle shift invariant subspaces of L2(G) generated by Parseval frame generators.
Keywords
Locally compact abelian group; shift invariant space; local field@article{paperid:1022399,
author = {A. Ahmadi and A. Askari Hemmat and Raisi Tousi, Reihaneh},
title = {SHIFT INVARIANT SPACES FOR LOCAL FIELDS},
journal = {International Journal of Wavelets, Multiresolution and Information Processing},
year = {2011},
volume = {9},
number = {3},
month = {July},
issn = {0219-6913},
pages = {417--426},
numpages = {9},
keywords = {Locally compact abelian group; shift invariant space; local field},
}
%0 Journal Article
%T SHIFT INVARIANT SPACES FOR LOCAL FIELDS
%A A. Ahmadi
%A A. Askari Hemmat
%A Raisi Tousi, Reihaneh
%J International Journal of Wavelets, Multiresolution and Information Processing
%@ 0219-6913
%D 2011