Title : ( Prediction of liquefaction potential based on CPT up-sampling )
Authors: Javad Sadoghi Yazdi , Farzin Kalantary , Hadi Sadoghi Yazdi ,Access to full-text not allowed by authors
Abstract
Cone penetrationtestdatahasbeenwidelyusedfordeterminationofthethresholdofseismically inducedsoilliquefaction.However,possibleinaccuraciesinthecollecteddatafromcasehistoriesas well asnaturalvariabilityofparametersandotheruncertaintiesassociatedwithnaturalphenomenon have yetprohibitedaconclusivedefinitionforthisthreshold. Variousclassificationtechniqueshavebeenusedtodefinethemostreliablecorrelations.However, availableliquefiedtonon-liquefieddataimbalancehascausedlearningbiastothemajorityclassinthe learning modelofthepatternrecognitionsystems.Thishasadverselyaffectedtheoutcomeofsuch approachesandinordertoovercomethisproblemSupportVectorDataDescription(SVDD)strategyis employedto‘‘upsample’’theminoritydata.InotherwordsSVDD,whichisrobustagainstnoisy samples,isusedtogeneratevirtualdatapointsfortheminorityclass,bearingthesamecharacteristics as thenon-virtualsamples.Inordertospecifythemostappropriatedatarangeasphereboundary around themainbodyofthedataaresoughtthroughanoptimizationprocess.Thedatainsidethe obtainedboundaryarethetargetdataandtheonesoutsideitaretheoutliersorso-called‘‘noise’’,tobe neglected.Thisprocedurereducestheissueofclassintermixtureinthefringezoneandproduces relativelywelldefinedclassthatthenisfedintotheAdaptiveNeuro-FuzzyInferenceSystem(ANFIS) classifierfordeterminationofliquefactionpotential.Thepredictionsarethenexaminedtoevaluatethe reliabilityandvalidationoftheoveralltechniqueandcomparedwithotherpredictionmethodsusing confusionmatrix.Itisshownthattheoverallaccuracyoftheproposedtechniqueishigherthanall previouslyproposedmethodsandonlyequaltotheSupportVectorMachine(SVM)technique. FurthermoreanimprovementintheF-scoreofthenon-liquefieddatarecognitionhasbeenachieved in relationtoallpreviouslyproposedmethods.
Keywords
, Soil liquefaction Cone penetrationtest Support VectorDataDescription Adaptive neuro, fuzzyinferencesystem Up sampling@article{paperid:1028137,
author = {Javad Sadoghi Yazdi and Farzin Kalantary and Sadoghi Yazdi, Hadi},
title = {Prediction of liquefaction potential based on CPT up-sampling},
journal = {Computers and Geosciences},
year = {2012},
volume = {44},
number = {1},
month = {May},
issn = {0098-3004},
pages = {10--23},
numpages = {13},
keywords = {Soil liquefaction
Cone penetrationtest
Support VectorDataDescription
Adaptive neuro-fuzzyinferencesystem
Up sampling},
}
%0 Journal Article
%T Prediction of liquefaction potential based on CPT up-sampling
%A Javad Sadoghi Yazdi
%A Farzin Kalantary
%A Sadoghi Yazdi, Hadi
%J Computers and Geosciences
%@ 0098-3004
%D 2012