Computers and Electronics in Agriculture, ( ISI ), Volume (101), No (1), Year (2014-1) , Pages (68-75)

Title : ( Deriving data mining and regression based water-salinity production functions for spring wheat (Triticum aestivum) )

Authors: Amir Haghverdi , Bijan Ghahraman , Brian G. Leib , Inmaculada Pulido-Calvo , Mohammad Kafi , Kamran Davary , Behrang Ashorun ,

Citation: BibTeX | EndNote

Production functions (PFs) are practical tools for not only irrigation scheduling but also in economic analysis as a mathematical relationship between relative grain yield and factors like evapotranspiration, irrigation water and salinity. This study was carried out in the Mashhad region of Iran during cropping years 2010 and 2011 to evaluate the performances of two data mining methods, decision tree and neural network, for deriving PFs of spring wheat under simultaneous drought and salinity stress compared with four well known regression-based PFs. The four well known PFs were: Jensen-PF (Jensen, 1968), Minhas- PF (Minhas et al., 1974), modified Stewart-PF (Stewart et al., 1977; Stegman et al., 1980), and Nairizi-PF (Nairizi and Rydzewski, 1977). Heading and flowering were the most sensitive growth stages followed by the stem elongation and booting. Salinity stress also affected grain yield and therefore was an important parameter for deriving PFs. In general, all the PFs were in agreement concerning the sensitivity of spring wheat to water stress. The neural network-based PF performed the best with a root mean square error equal to 44.27 g m2 while the decision tree-based PF ranked fourth out of six in terms of accuracy. The most important advantage of the neural network-based PF was the flexible number of input parameters.

Keywords

, Classification and regression trees, Deficit irrigation, Multilayer perceptron, Response surface,
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1038626,
author = {Haghverdi, Amir and Ghahraman, Bijan and Brian G. Leib and Inmaculada Pulido-Calvo and Kafi, Mohammad and Davary, Kamran and Behrang Ashorun},
title = {Deriving data mining and regression based water-salinity production functions for spring wheat (Triticum aestivum)},
journal = {Computers and Electronics in Agriculture},
year = {2014},
volume = {101},
number = {1},
month = {January},
issn = {0168-1699},
pages = {68--75},
numpages = {7},
keywords = {Classification and regression trees; Deficit irrigation; Multilayer perceptron; Response surface; Salinity},
}

[Download]

%0 Journal Article
%T Deriving data mining and regression based water-salinity production functions for spring wheat (Triticum aestivum)
%A Haghverdi, Amir
%A Ghahraman, Bijan
%A Brian G. Leib
%A Inmaculada Pulido-Calvo
%A Kafi, Mohammad
%A Davary, Kamran
%A Behrang Ashorun
%J Computers and Electronics in Agriculture
%@ 0168-1699
%D 2014

[Download]