Surveys in Mathematics and its Applications, Volume (8), No (1), Year (2013-10) , Pages (23-34)

Title : ( Positive block matrices on Hilbert and Krein C*-modules )

Authors: M. Dehghani , S.M.S. Modarres , Mohammad Sal Moslehian ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Let mathscr{H}_1 and mathscr{H}_2 be Hilbert C^* -modules. In this paper we give some necessary and sufficient conditions for the positivity of a block matrix on the Hilbert C^* -module mathscr{H}_1 oplus mathscr{H}_2 If mathscr{H}_1, J_1) and ( mathscr{H}_2, J_2) are two Krein C^* -modules, we study the { bf tilde{J}}$-positivity of 2 times 2 block matrix begin{eqnarray*} left( begin{array}{cc} A & X X^{ sharp}& B end{array} right) end{eqnarray*} on the Krein C^* -module ( mathscr{H}_1 oplus mathscr{H}_2,{ bf tilde{J}}=J_1 oplus J_2) , where $X^{\\\\sharp}=J_2X^*J_1$ is the $(J_2,J_1)$-adjoint of the operator $X$. We prove that if $A$ is $J_1$-selfadjoint and $B$ is $J_2$-selfadjoint and $A$ is invertible, then the operator $\\\\left(\\\\begin{array}{cc}A & X\\\\\\\\ X^{\\\\sharp} & B\\\\end{array}\\\\right)$ is ${\\\\bf\\\\tilde{J}}$-positive if and only if $A\\\\geq^{J_1}0$, $B\\\\geq^{J_2}0$ and $X^{\\\\sharp}A^{-1}X\\\\leq^{J_2}B$. We also present more equivalent conditions for the ${\\\\bf\\\\tilde{J}}$-positivity of this operator.

Keywords

, Block matrix; Indefinite inner product module; J, positive operator; J, contraction; Krein C*, module
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1039698,
author = {M. Dehghani and S.M.S. Modarres and Sal Moslehian, Mohammad},
title = {Positive block matrices on Hilbert and Krein C*-modules},
journal = {Surveys in Mathematics and its Applications},
year = {2013},
volume = {8},
number = {1},
month = {October},
issn = {1843-7265},
pages = {23--34},
numpages = {11},
keywords = {Block matrix; Indefinite inner product module; J-positive operator; J-contraction; Krein C*-module},
}

[Download]

%0 Journal Article
%T Positive block matrices on Hilbert and Krein C*-modules
%A M. Dehghani
%A S.M.S. Modarres
%A Sal Moslehian, Mohammad
%J Surveys in Mathematics and its Applications
%@ 1843-7265
%D 2013

[Download]