Title : ( In-situ synthesis of nanostructured NiAl-Al2O3 composite coatings on cast iron substrates by spark plasma sintering of mechanically activated powders )
Authors: Maryam Beyhaghi , Mehrdad Kashefi Torbati , Ali Reza Kiani Rashid , Jalil Vahdati Khaki , Stefan Jonsson ,Access to full-text not allowed by authors
Abstract
Bulk pellets and coatings of NiAl-Al2O3 composites on gray cast-iron substrates are fabricated by spark plasma sintering (SPS) at 700 and 1050 °C using a highly reactive powder-mixture of “13Al + 8Ni + 3NiO” activated by 1 hour ballmilling. The reactions are complete in all cases, except for the coating produced at the lower temperature. At both temperatures, the pellets experienced internal explosions, due to the intense reactivity of the powder, producing inhomogeneousmicrostructures. At 1050 °C, the heat absorption fromthe substrates resulted in damped reactions producing homogenous, dense, fully reacted NiAl-Al2O3 composite coatings with crystallite sizes of 73 nmand 65nm, respectively. A bond layer forms by growing into the substrate and diffusion of Fe,Ni, Al and Si is found in the coating, the bond layer and the substrate. In all cases, the adherence of coatings to substrates is good with no signs of pores or cracks. The products are examined by LOM, SEM, EDS, XRD, Vickers hardness indentation and scratch testing. The SPS process is analyzed by FEM-simulations using a homogeneous reaction model where the properties are given by linear combinations of reactants and products.Melting enthalpies of all compounds are taken into consideration when calculating the maximumreaction temperatures for various combustion times and gap conductivities between powder and graphite parts of the SPS apparatus. The maximum reaction temperatures are calculated for pellets and for coatings on cast iron substrates and also for mixtures of activated and already reacted powder. The results are shown as isotherms. Comparison to experiments suggests a reaction time exceeding 1 s and a gap conductivity of less than 10 kW.m−2.K−1. For ignition at 500 °C, the adiabatic temperature is estimated to 2056 °C.
Keywords
, Nickel aluminide, Alumina, Composite, Coating, Spark plasma sintering, FEM simulations@article{paperid:1047801,
author = {Beyhaghi, Maryam and Kashefi Torbati, Mehrdad and Kiani Rashid, Ali Reza and Vahdati Khaki, Jalil and Stefan Jonsson},
title = {In-situ synthesis of nanostructured NiAl-Al2O3 composite coatings on cast iron substrates by spark plasma sintering of mechanically activated powders},
journal = {Surface and Coatings Technology},
year = {2015},
volume = {272},
month = {June},
issn = {0257-8972},
pages = {254--267},
numpages = {13},
keywords = {Nickel aluminide; Alumina; Composite; Coating; Spark plasma sintering; FEM simulations},
}
%0 Journal Article
%T In-situ synthesis of nanostructured NiAl-Al2O3 composite coatings on cast iron substrates by spark plasma sintering of mechanically activated powders
%A Beyhaghi, Maryam
%A Kashefi Torbati, Mehrdad
%A Kiani Rashid, Ali Reza
%A Vahdati Khaki, Jalil
%A Stefan Jonsson
%J Surface and Coatings Technology
%@ 0257-8972
%D 2015