Title : ( Inequalities for operator space numerical radius of 2x2 block matrices )
Authors: Mohammad Sal Moslehian , Mostafa Sattari ,Access to full-text not allowed by authors
Abstract
In this paper, we study the relationship between operator space norm and operator space numerical radius on the matrix space $\mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. Moreover, we establish several inequalities for operator space numerical radius and the maximal numerical radius norm of $2\times 2$ operator matrices and their off-diagonal parts. One of our main results states that if $(X, (O_n))$ is an operator space, then \begin{align*} \frac12\max\big(W_{\max}(x_1+x_2)&, W_{\max}(x_1-x_2) \big)\\ &\le W_{\max}\Big(\begin{bmatrix} 0 & x_1 \\ x_2 & 0 \end{bmatrix}\Big)\\ &\hspace{1.5cm}\le \frac12\left(W_{\max}(x_1+x_2)+ W_{\max}(x_1-x_2) \right) \end{align*} for all $x_1, x_2\in \mathcal{M}_n(X)$.
Keywords
, Numerical radius operator space, operator space norm, maximal numerical radius norm, block matrix, operator space@article{paperid:1048795,
author = {Sal Moslehian, Mohammad and Mostafa Sattari},
title = {Inequalities for operator space numerical radius of 2x2 block matrices},
journal = {Journal of Mathematical Physics},
year = {2016},
volume = {57},
number = {1},
month = {January},
issn = {0022-2488},
pages = {1--15},
numpages = {14},
keywords = {Numerical radius operator space; operator space norm; maximal numerical radius norm; block matrix; operator space},
}
%0 Journal Article
%T Inequalities for operator space numerical radius of 2x2 block matrices
%A Sal Moslehian, Mohammad
%A Mostafa Sattari
%J Journal of Mathematical Physics
%@ 0022-2488
%D 2016