Title : ( Tsallis Maximum Entropy Lorenz Curves )
Authors: M. Yaghoobi Avval Riabi , Gholam Reza Mohtashami Borzadaran , G. Yari ,Access to full-text not allowed by authors
Abstract
In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as β tends to one. Finally, by using actual data, we compare the maximum Tsallis entropy Lorenz curve with some parametric Lorenz curves.
Keywords
, Tsallis entropy; Shannon entropy; maximum entropy principle; Lorenz Curve, Gini index; income distribution.@article{paperid:1049021,
author = {M. Yaghoobi Avval Riabi and Mohtashami Borzadaran, Gholam Reza and G. Yari},
title = {Tsallis Maximum Entropy Lorenz Curves},
journal = {پژوهش های آماری ایران-Journal of Statistical Research of Iran},
year = {2014},
volume = {11},
number = {1},
month = {September},
issn = {1735-1294},
pages = {41--56},
numpages = {15},
keywords = {Tsallis entropy; Shannon entropy; maximum entropy principle;
Lorenz Curve; Gini index; income distribution.},
}
%0 Journal Article
%T Tsallis Maximum Entropy Lorenz Curves
%A M. Yaghoobi Avval Riabi
%A Mohtashami Borzadaran, Gholam Reza
%A G. Yari
%J پژوهش های آماری ایران-Journal of Statistical Research of Iran
%@ 1735-1294
%D 2014