Aequationes Mathematicae, ( ISI ), Volume (89), No (3), Year (2015-10) , Pages (529-541)

Title : ( Approximate Roberts orthogonality )

Authors: Ali Zamani , Mohammad Sal Moslehian ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

In a real normed space we introduce two notions of approximate Roberts orthogonality as follows: $$x \perp_R^\varepsilon y \, {\rm if \, and \, only \, if} \left|\|x + ty\|^2 - \|x - ty\|^2\right| \leq 4\varepsilon\|x\|\|ty\| \, {\rm for \, all} \, t \in \mathbb{R}\,;$$ and $$x^{\varepsilon} \perp_R y \, {\rm if \, and \, only \, if} \left|\|x + ty\|-\|x - ty\|\right| \leq \varepsilon(\|x + ty\| + \|x - ty\|) \, {\rm for \, all} \, t \in \mathbb{R}\,.$$ We investigate their properties and their relationship with the approximate Birkhoff orthogonality. Moreover, we study the class of linear mappings preserving approximately Roberts orthogonality of type \({^{\varepsilon}\perp_R}\). A linear mapping \({U: \mathcal{X} \to \mathcal{Y}}\) between real normed spaces is called an \({\varepsilon}\)-isometry if \({(1 - \varphi_1 (\varepsilon))\|x\| \leq \|Ux\| \leq (1 + \varphi_2(\varepsilon))\|x\|\,\,(x \in \mathcal{X})}\), where \({\varphi_1 (\varepsilon)\rightarrow0}\) and \({\varphi_2 (\varepsilon)\rightarrow0}\) as \({\varepsilon\rightarrow 0}\). We show that a scalar multiple of an \({\varepsilon}\)-isometry is an approximately Roberts orthogonality preserving mapping.

Keywords

, Roberts orthogonality approximate orthogonality \({\varepsilon}\), isometry orthogonality preserving mapping
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1050156,
author = {Zamani, Ali and Sal Moslehian, Mohammad},
title = {Approximate Roberts orthogonality},
journal = {Aequationes Mathematicae},
year = {2015},
volume = {89},
number = {3},
month = {October},
issn = {0001-9054},
pages = {529--541},
numpages = {12},
keywords = {Roberts orthogonality approximate orthogonality \({\varepsilon}\)-isometry orthogonality preserving mapping},
}

[Download]

%0 Journal Article
%T Approximate Roberts orthogonality
%A Zamani, Ali
%A Sal Moslehian, Mohammad
%J Aequationes Mathematicae
%@ 0001-9054
%D 2015

[Download]