Intelligent Systems (ICIS), 2014 Iranian Conference on , 2014-02-04

Title : ( Clustering based on Cuckoo Optimization Algorithm )

Authors: Mahya Ameryan , Mohammad Reza Akbarzadeh Totonchi , Seyyed Javad Seyyed Mahdavi ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

This paper presents four novel clustering methods based on a recent powerful evolutionary algorithm called Cuckoo Optimization Algorithm (COA) inspired by nesting behavior and immigration of cuckoo birds. To take advantage of COA in clustering, here, an individual cuckoo represents a candidate solution consisting of clusters' centroids. Fitness function calculates sum of intra cluster distances. Three proposed approaches named Random COA Clustering, Chaotic COA Clustering and K-means COA Clustering differ in initial step of original COA algorithm. In COA Clustering, initial population is produced randomly. In Chaotic COA Clustering, to cover whole search space and enrich algorithm, chaotic Arnold's Cat map is used to produce initial population instead of randomness. In K-means COA Clustering, to start from closer to global optimum, well-known K-means algorithm is conducted to produce initial cuckoos. In order to local search in COA, each cuckoo lays its own eggs within a specific radius. The aim of producing better neighbors and escape local optimum in proposed Enhanced COA Clustering (ECOAC), this boundary doesn't exist and each cuckoo puts its eggs via Lévy flight. The results of conducting these novel methods on four VCI datasets illustrate their comparable stability and power of them.

Keywords

evolutionary computation; optimization; pattern clustering; search
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@inproceedings{paperid:1054953,
author = {Mahya Ameryan and Akbarzadeh Totonchi, Mohammad Reza and Seyyed Javad Seyyed Mahdavi},
title = {Clustering based on Cuckoo Optimization Algorithm},
booktitle = {Intelligent Systems (ICIS), 2014 Iranian Conference on},
year = {2014},
location = {IRAN},
keywords = {evolutionary computation; optimization; pattern clustering; search problems},
}

[Download]

%0 Conference Proceedings
%T Clustering based on Cuckoo Optimization Algorithm
%A Mahya Ameryan
%A Akbarzadeh Totonchi, Mohammad Reza
%A Seyyed Javad Seyyed Mahdavi
%J Intelligent Systems (ICIS), 2014 Iranian Conference on
%D 2014

[Download]