Title : ( An extension of Lepingle inequality in von Neumann algebras with finite trace )
Authors: ali talebi , Mohammad Sal Moslehian ,Access to full-text not allowed by authors
Abstract
An inequality of Asmar and Montgomery-Smith states that \begin{eqnarray*} \| (\sum_{n=1}^\infty |\mathbb{E}_{\mathcal{F}_{n-1}}X_n|^q)^{\frac{1}{q}} \|_p \leq C_p \| (\sum_{n=1}^\infty |X_n|^q)^{\frac{1}{q}} \|_p \quad (1 < p < \infty, 1 \leq q \leq \infty), \end{eqnarray*} where $(X_n)_{n=1}^\infty$ is a stochastic process adapted to the filtration $(\mathcal{F}_n)_{n=0}^\infty$. Recall that a filtration of a von Neumann algebra $\mathcal{M}$ is an increasing sequence $(\mathcal{M}_n)_{n\ge 0}$ of von Neumann subalgebras of $\mathcal{M}$ such that $\bigcup\limits_{n\ge 0} \mathcal{M}_n$ generates $\mathcal{M}$ in the $w^*$-topology. Using the duality argument Lepingle verified this inequality for adapted process with $q=2$. We obtain some versions of Lepingle inequality in the noncommutative setting.
Keywords
, ٍٍExtension, Lepingle inequality, von Neumann algebra, finite trace@inproceedings{paperid:1061350,
author = {Talebi, Ali and Sal Moslehian, Mohammad},
title = {An extension of Lepingle inequality in von Neumann algebras with finite trace},
booktitle = {چهلمین کنفرانس ریاضی ایران},
year = {2016},
location = {کرج, IRAN},
keywords = {ٍٍExtension;Lepingle inequality;von Neumann algebra;finite trace},
}
%0 Conference Proceedings
%T An extension of Lepingle inequality in von Neumann algebras with finite trace
%A Talebi, Ali
%A Sal Moslehian, Mohammad
%J چهلمین کنفرانس ریاضی ایران
%D 2016