آب و خاک, دوره (29), شماره (2), سال (2015-7) , صفحات (274-283)

عنوان : ( ارزیابی توانایی مدل های هوشمند در پیش بینی بارندگی ماهانه به کمک الگوهای پیوند از دور (مطالعه موردی استان خراسان رضوی) )

نویسندگان: فرزانه نظریه , حسین انصاری ,
فایل: Full Text

استناددهی: BibTeX | EndNote

چکیده

الگوهای پیوند دور از جمله عوامل موثر بر میزان بارش می باشند، در این تحقیق توانایی مدل های هوشمند در پیش بینی بارندگی ماهانه به کمک داده های پیوند از دور در هشت ایستگاه سینوپتیک استان خراسان رضوی برای سال های 1991 تا 2010 مورد بررسی قرار گرفت. مدل های هوشمند مورد بررسی عبارتند از مدل شبکه عصبی مصنوعی، مدل استنتاج فازی و مدل نروفازی. معیارهای آماری برای مقایسه نتایج مدل ها شامل ضریب همبستگی، میانگین خطای اریبی، میانگین مربعات خطا و معیارهای ترکیبی جاکووی دز و صباغ می باشد. پس از یافتن بهترین ساختار برای مدل های هوشمند و مقایسه آن ها، مشخص گردید مدل نروفازی بهترین نتایج را دارا می باشد. معیار های آماری برای پیش بینی بارش به روش نروفازی به ترتیب در یک ماهه آینده برابر 8/0، 55/0-، 43/0، 7/0، 91/0، برای دو ماهه آینده برابر 79/0، 32/1-، 48/0، 56/1، 4/0 و برای سه ماهه آینده برابر 73/0، 37/1-، 54/0، 47/1، 36/0 به دست آمد. نتایج مدل های هوشمند برای ایستگاهی که داده های آن در بخش آموزش بکار برده نشده بود حاکی از این است که مدل ها برای منطقه جغرافیایی آموزش دیده توانایی پیش بینی بارش را دارند. بررسی دقت مدل نروفازی در هر یک از کلاس های شاخص بارندگی استاندارد نشان داد که این مدل در برآورد مقادیر بارش در کلاس های تر سالی بسیار شدید و تر سالی شدید کم برآورد داشته است. در نهایت نتایج این تحقیق نشان داد که مدل های هوشمند مخصوصاً مدل نروفازی ابزار مناسبی برای پیش بینی بارندگی می باشند، اما از این مدل ها در کلاس های تر سالی بسیار شدید و تر سالی شدید با تامل بیشتری باید استفاده نمود.

کلمات کلیدی

, پیش بینی بارندگی, الگوهای پیوند از دور, سیستم استنتاج فازی, شبکه عصبی مصنوعی, شبکه نروفازی
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1068293,
author = {نظریه, فرزانه and انصاری, حسین},
title = {ارزیابی توانایی مدل های هوشمند در پیش بینی بارندگی ماهانه به کمک الگوهای پیوند از دور (مطالعه موردی استان خراسان رضوی)},
journal = {آب و خاک},
year = {2015},
volume = {29},
number = {2},
month = {July},
issn = {2008-4757},
pages = {274--283},
numpages = {9},
keywords = {پیش بینی بارندگی، الگوهای پیوند از دور، سیستم استنتاج فازی، شبکه عصبی مصنوعی، شبکه نروفازی},
}

[Download]

%0 Journal Article
%T ارزیابی توانایی مدل های هوشمند در پیش بینی بارندگی ماهانه به کمک الگوهای پیوند از دور (مطالعه موردی استان خراسان رضوی)
%A نظریه, فرزانه
%A انصاری, حسین
%J آب و خاک
%@ 2008-4757
%D 2015

[Download]