Stochastics-An International Journal of Probability and Stochastic Processes, Year (2021-4) , Pages (1-14)

Title : ( Maximal inequalities in noncommutative probability spaces )

Authors: Ghadir Sadeghi , Mohammad Sal Moslehian , ali talebi ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

‎We employ some techniques involving projections in von Neumann algebras to establish some maximal inequalities such as the strong and weak symmetrization‎, ‎L\\\\\\\'{e}vy‎, ‎L\\\\\\\'{e}vy--Skorohod‎, ‎and Ottaviani inequalities in the realm of noncommutative probability spaces‎. ‎As consequence‎, ‎we derive the corresponding inequalities in the commutative set-up‎.

Keywords

Noncommutative L\\\\\\\'{e}vy inequality; noncommutative probability space; tensor independence; symmetrization; maximal inequality
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1084677,
author = {Sadeghi, Ghadir and Sal Moslehian, Mohammad and Talebi, Ali},
title = {Maximal inequalities in noncommutative probability spaces},
journal = {Stochastics-An International Journal of Probability and Stochastic Processes},
year = {2021},
month = {April},
issn = {1744-2508},
pages = {1--14},
numpages = {13},
keywords = {Noncommutative L\\\\\\\'{e}vy inequality; noncommutative probability space; tensor independence; symmetrization; maximal inequality},
}

[Download]

%0 Journal Article
%T Maximal inequalities in noncommutative probability spaces
%A Sadeghi, Ghadir
%A Sal Moslehian, Mohammad
%A Talebi, Ali
%J Stochastics-An International Journal of Probability and Stochastic Processes
%@ 1744-2508
%D 2021

[Download]