Aequationes Mathematicae, ( ISI ), Volume (95), No (5), Year (2021-10) , Pages (867-887)

Title : ( Orthogonality preserving property for pairs of operators on Hilbert $$C^*$$-modules )

Authors: Michael Frank , Mohammad Sal Moslehian , Ali Zamani ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

‎We investigate the orthogonality preserving property for pairs of operators on inner product‎ ‎$C^*$-modules‎. ‎Employing the fact that the $C^*$-valued inner product structure of a Hilbert‎ ‎$C^*$-module is determined essentially by the module structure and by the orthogonality structure‎, ‎pairs of linear and local orthogonality-preserving operators are investigated‎, ‎not a priori bounded‎. ‎We obtain that if $\\\\mathscr{A}$ is a $C^{*}$-algebra‎ ‎and $T‎, ‎S:\\\\mathscr{E}\\\\to \\\\mathscr{F}$ are two‎ ‎bounded ${\\\\mathscr A}$-linear operators between full Hilbert‎ ‎$\\\\mathscr{A}$-modules‎, ‎then $\\\\langle x‎, ‎y\\\\rangle = 0$ implies $\\\\langle T(x)‎, ‎S(y)\\\\rangle = 0$‎ ‎for all $x‎, ‎y\\\\in \\\\mathscr{E}$ if and only if there exists an element $\\\\gamma$‎ ‎of the center $Z(M({\\\\mathscr A}))$ of the multiplier algebra $M({\\\\mathscr A})$‎ ‎of ${\\\\mathscr A}$ such that $\\\\langle T(x)‎, ‎S(y)\\\\rangle = \\\\gamma \\\\langle x‎, ‎y\\\\rangle$‎ ‎for all $x‎, ‎y\\\\in \\\\mathscr{E}$‎. ‎Varying the conditions on the operators $T$ and $S$ we obtain‎ ‎further affirmative results for local operators and for pairs of a bounded and an unbounded‎ ‎${\\\\mathscr A}$-linear operator with bounded inverse‎.

Keywords

, Orthogonality preserving property; local operator; inner product $C^*$, module; $C^*$, algebra
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1084678,
author = {Michael Frank and Sal Moslehian, Mohammad and Ali Zamani},
title = {Orthogonality preserving property for pairs of operators on Hilbert $$C^*$$-modules},
journal = {Aequationes Mathematicae},
year = {2021},
volume = {95},
number = {5},
month = {October},
issn = {0001-9054},
pages = {867--887},
numpages = {20},
keywords = {Orthogonality preserving property; local operator; inner product $C^*$-module; $C^*$-algebra},
}

[Download]

%0 Journal Article
%T Orthogonality preserving property for pairs of operators on Hilbert $$C^*$$-modules
%A Michael Frank
%A Sal Moslehian, Mohammad
%A Ali Zamani
%J Aequationes Mathematicae
%@ 0001-9054
%D 2021

[Download]