Title : ( In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries )
Authors: Yang Jing , Evan Wenbo Zhao , Marc-Antoni Goulet , Meisam Bahari , Eric M. Fell , Shijian Jin , Ali Davoodi , Erlendur Jonsson , Min Wu , Clare P. Grey , Roy G. Gordon , Aziz Michel J. ,
Abstract
Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization—and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2− to the dimer (DHA)24− by one-electron transfer followed by oxidation of (DHA)24− to DHAQ2− by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte—rebalancing the states of charge of both electrolytes without introducing extra ions.