Linear and Multilinear Algebra, ( ISI ), Volume (72), No (5), Year (2023-1) , Pages (751-763)

Title : ( q-Numerical radius inequalities for Hilbert space )

Authors: Sadaf Fakhri Moghaddam , Seyyed Alireza Kamel Mirmostafaee , Mohammad Janfada ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

The aim of this paper is to study the q-numerical radius ωq(.)of bounded linear operators on Hilbert spaces. More precisely, first, we show thatωq(.)defines a norm which is equivalent to the opera-tor norm. Next, the following compatible generalization of Kittaneh’sinequality14(q2−q2)2‖T∗T+TT∗‖≤ω2q(T)≤q22(1−√1−q2)2×‖T∗T+TT∗‖.is obtained. Finally, some generalizations of q-numerical radius inequalities for composition of operators are established

Keywords

, Numerical range, Numerical radius
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1092959,
author = {Fakhri Moghaddam, Sadaf and Kamel Mirmostafaee, Seyyed Alireza and Janfada, Mohammad},
title = {q-Numerical radius inequalities for Hilbert space},
journal = {Linear and Multilinear Algebra},
year = {2023},
volume = {72},
number = {5},
month = {January},
issn = {0308-1087},
pages = {751--763},
numpages = {12},
keywords = {Numerical range; Numerical radius},
}

[Download]

%0 Journal Article
%T q-Numerical radius inequalities for Hilbert space
%A Fakhri Moghaddam, Sadaf
%A Kamel Mirmostafaee, Seyyed Alireza
%A Janfada, Mohammad
%J Linear and Multilinear Algebra
%@ 0308-1087
%D 2023

[Download]