Functional Analysis and Its Applications, Volume (57), No (1), Year (2023-3) , Pages (18-28)

Title : ( Improved Inequalities for Numerical Radius via Cartesian Decomposition )

Authors: P. Bhunia , S. Jana , Mohammad Sal Moslehian , K. Paul ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

We develop various lower bounds for the numerical radius $w(A)$ of a bounded linear operator $A$ defined on a complex Hilbert space, which improve the existing inequality $w^2(A)\\\\geq \\\\frac{1}{4}\\\\|A^*A+AA^*\\\\|$. In particular, for $r\\\\geq 1$, we show that \\\\begin{eqnarray*}\\\\frac{1}{4}\\\\|A^*A+AA^*\\\\| \\\\leq\\\\frac{1}{2} \\\\left( \\\\frac{1}{2}\\\\|\\\\Re(A)+\\\\Im(A)\\\\|^{2r}+\\\\frac{1}{2}\\\\|\\\\Re(A)-\\\\Im(A)\\\\|^{2r}\\\\right)^{\\\\frac{1}{r}} \\\\leq w^{2}(A),\\\\end{eqnarray*} where $\\\\Re(A)$ and $\\\\Im(A)$ are the real and imaginary parts of $A$, respectively. Furthermore, we obtain upper bounds for $w^2(A)$ refining the well-known upper bound $w^2(A)\\\\leq \\\\frac{1}{2} \\\\left(w(A^2)+\\\\|A\\\\|^2\\\\right)$. Separate complete characterizations for $w(A)=\\\\frac{\\\\|A\\\\|}{2}$ and $w(A)=\\\\frac{1}{2}\\\\sqrt{\\\\|A^*A+AA^*\\\\|}$ are also given.

Keywords

numerical radius operator norm Cartesian decomposition bounded linear operator
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1096612,
author = {پ. بهونیا and س. جانا and Sal Moslehian, Mohammad and ک. پال},
title = {Improved Inequalities for Numerical Radius via Cartesian Decomposition},
journal = {Functional Analysis and Its Applications},
year = {2023},
volume = {57},
number = {1},
month = {March},
issn = {0016-2663},
pages = {18--28},
numpages = {10},
keywords = {numerical radius operator norm Cartesian decomposition bounded linear operator},
}

[Download]

%0 Journal Article
%T Improved Inequalities for Numerical Radius via Cartesian Decomposition
%A پ. بهونیا
%A س. جانا
%A Sal Moslehian, Mohammad
%A ک. پال
%J Functional Analysis and Its Applications
%@ 0016-2663
%D 2023

[Download]