علوم رایانش و فناوری اطلاعات, دوره (20), شماره (1), سال (2022-4) , صفحات (1-16)

عنوان : ( بررسی عملکرد الگوریتم‌های یادگیری جمعی مبتنی بر درخت بهینه‌شده در پیش‌بینی شدت حوادث ساخت‌و‌ساز )

نویسندگان: علی اکبر سالاریان , منصور قلعه نوی , علی رحیم زادگان ,

بر اساس تصمیم نویسنده مقاله دسترسی به متن کامل برای اعضای غیر دانشگاه ممکن نیست

استناددهی: BibTeX | EndNote

چکیده

علی‌رغم پیشرفت‌های قابل توجه در سیستم‌های مدیریت ایمنی طی دهه‌های اخیر، صنعت ساخت‌و‌ساز همچنان از نرخ حوادث شغلی و تلفات بسیار بالاتری نسبت به دیگر صنایع برخوردار است. از این رو، مطالعه و بررسی بیشتر این حوادث برای جلوگیری از رخداد حوادث مشابه مورد توجه و نیاز است. عمده تحقیقات انجام شده در حوزه ایمنی ساخت‌و‌ساز بر شناسایی علل حوادث و استفاده از روش‌های مرسوم و فردی یادگیری ماشین متمرکز هستند. این پژوهش، به ارزیابی و مقایسه توانایی دو رویکرد متفاوت از الگوریتم‌های یادگیری جمعی مبتنی بر درخت به نام بگینگ (جنگل تصادفی و طبقه‌بند بگینگ) و بوستینگ (درخت تقویت گرادیان، LGBM، XGBoost و CatBoost) در مدل‌سازی و پیش‌بینی شدت حوادث پرداخته است. به منظور بهبود عملکرد مدل‌های نامبرده از الگوریتم بهینه‌سازی بیز برای تنظیم ابرپارامترهای الگوریتم‌ها استفاده گردید. نتایج گواه بر برتری الگوریتم‌های یادگیری جمعی مبتنی بر رویکرد بوستینگ از منظر عملکرد پیش‌بینی و برتری الگوریتم‌های مبتنی بر رویکرد بگینگ از منظر سرعت اجرا بود. BO-XGBoost و طبقه‌بند بگینگ بهینه‌شده (BO-Bagging) به ترتیب از قوی‌ترین و ضعیف‌ترین عملکرد پیش‌بینی در میان تمامی الگوریتم‌های جمعی برخوردار بودند. چهارچوب تحقیقاتی اعمال شده در مطالعه پیش‌رو به متخصصان ایمنی در پیش‌بینی دقیق‌تر پیامد حوادث و انجام اقدامات پیشگیرانه مناسب‌تر کمک می‌نماید.

کلمات کلیدی

, مدیریت ایمنی, حوادث ساخت‌وساز, تحلیل شدت حوادث, یادگیری جمعی, بگینگ, بوستینگ, بهینه‌سازی, بهینه‌سازی بیز, طبقه‌بندی نظارت‌شده
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1096622,
author = {سالاریان, علی اکبر and قلعه نوی, منصور and رحیم زادگان, علی},
title = {بررسی عملکرد الگوریتم‌های یادگیری جمعی مبتنی بر درخت بهینه‌شده در پیش‌بینی شدت حوادث ساخت‌و‌ساز},
journal = {علوم رایانش و فناوری اطلاعات},
year = {2022},
volume = {20},
number = {1},
month = {April},
issn = {2676-5438},
pages = {1--16},
numpages = {15},
keywords = {مدیریت ایمنی، حوادث ساخت‌وساز، تحلیل شدت حوادث، یادگیری جمعی، بگینگ، بوستینگ، بهینه‌سازی، بهینه‌سازی بیز، طبقه‌بندی نظارت‌شده},
}

[Download]

%0 Journal Article
%T بررسی عملکرد الگوریتم‌های یادگیری جمعی مبتنی بر درخت بهینه‌شده در پیش‌بینی شدت حوادث ساخت‌و‌ساز
%A سالاریان, علی اکبر
%A قلعه نوی, منصور
%A رحیم زادگان, علی
%J علوم رایانش و فناوری اطلاعات
%@ 2676-5438
%D 2022

[Download]