Boletin de la Sociedad Matematica Mexicana, Volume (29), No (3), Year (2023-10)

Title : ( Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term )

Authors: Mohammad Shahrouzi ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

This study aims for the global existence and asymptotic stability of solutions for a class of nonlinear viscoelastic higher-order p(x)-Laplacian equation. First, we prove the global existence of solutions in the appropriate range of the variable exponents and next, by using Martinez’s Lemma, we prove the asymptotic stability of solutions. Our results extend and improve the earlier results in the literature.

Keywords

, Global existence, Asymptotic stability, Higher-order, Viscoelastic, p(x)-Laplacian
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1098067,
author = {Shahrouzi, Mohammad},
title = {Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2023},
volume = {29},
number = {3},
month = {October},
issn = {1405-213x},
keywords = {Global existence; Asymptotic stability; Higher-order; Viscoelastic; p(x)-Laplacian},
}

[Download]

%0 Journal Article
%T Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term
%A Shahrouzi, Mohammad
%J Boletin de la Sociedad Matematica Mexicana
%@ 1405-213x
%D 2023

[Download]