Title : ( Characterization, structural, and evolutionary analysis of an extremophilic GH5 endoglucanase from Bacillus sp. G131: Insights from ancestral sequence reconstruction )
Authors: Nazanin Gholampour-Faroji , Jafar Hemmat , Aliakbar Haddad-Mashadrizeh , Ahmad Asoodeh ,
Abstract
Nature has developed extremozymes that catalyze complex reaction processes in extreme environmental conditions. Accordingly, a combined approach consisting of extremozyme screening, ancestral sequence resurrection (ASR), and molecular dynamic simulation was utilized to construct a developed endoglucanase. The primary experimental and in-silico data led to the prediction of a hypothetical sequence of endoglucanase (EG5-G131) using Bacillus sp. G131 confirmed by amplification and sequencing. EG5-G131 exhibited noticeable stability in a broad-pH range, several detergents, organic solvents, and temperatures up to 80 °C. The molecular weight, Vmax, and Km of the purified endoglucanase were estimated to be 36 kDa, 4.32 μmol/min, and 23.62 mg/ml, respectively. The calculated thermodynamic parameters for EG5-G131 confirmed its intrinsic thermostability. Computational analysis revealed Glu142 and Glu230 as active-site residues of the enzyme. Furthermore, the enzyme remained bound to cellotetraose at 298 K, 333 K, 343 K, and 353 K for 300 ns, consistent with our experimental data. ASR of EG5-G131 led to the introduction of ancestral ANC204 and ANC205, which show similar thermodynamic characteristics with the last Firmicute common ancestor. Finally, truncating loops from the N-terminal of two sequences created two variants with desirable thermal stability, suggesting the evolutionary deciphering of the functional domain of the GH5 family in Bacillus sp. G131.