Scientific Reports, Volume (15), No (1), Year (2025-7)

Title : ( A machine learning-based framework for predicting metabolic syndrome using serum liver function tests and high-sensitivity C-reactive protein )

Authors: Bahareh Behkamal , Fatemeh Asgharian Rezae , Amin Mansoori , Rana Kolahi Ahari , Sobhan Mahmoudi Shamsabad , Mohammad Reza Esmaeilian , Gordon Ferns , Mohammad Reza Saberi , Habibollah Esmaily , Majid Ghayour-Mobarhan ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Metabolic Syndrome (MetS) comprises a clustering of conditions that significantly increase the risk of heart disease, stroke, and diabetes. Timely detection and intervention are crucial in preventing severe health outcomes. In this study, we implemented a machine learning (ML)-based predictive framework to identify MetS using serum liver function tests—Alanine Transaminase (ALT), Aspartate Aminotransferase (AST), Direct Bilirubin (BIL.D), Total Bilirubin (BIL.T)—and high-sensitivity C-reactive protein (hs-CRP). The framework integrated diverse ML algorithms, including Linear Regression (LR), Decision Trees (DT), Support Vector Machine (SVM), Random Forest (RF), Balanced Bagging (BG), Gradient Boosting (GB), and Convolutional Neural Networks (CNNs). This framework is designed to develop a robust, scalable, and efficient predictive tool. We evaluated our approach on a large-scale cohort comprising 9,704 participants from the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study, spanning 2010–2020. After preprocessing, a final dataset of 8,972 individuals (3,442 with MetS and 5,530 without) was used for model development and validation. Among the tested models, GB and CNN demonstrated superior performance, achieving specificity rates of 77% and 83%, respectively. The Gradient Boosting model achieved the lowest error rate of 27%, indicating robust predictive capability. Additionally, SHAP analysis identified hs-CRP, BIL.D, ALT, and sex as the most influential predictors of MetS. These findings suggest that leveraging liver function biomarkers and hs-CRP within an automated ML pipeline can facilitate early, non-invasive detection of MetS, supporting clinical decision-making and risk stratification efforts in healthcare systems.

Keywords

, Metabolic syndrome, Liver function tests, High-sensitivity C-reactive protein (hs-CRP), Machine learning
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1103637,
author = {بهاره بهمکال and فاطمه اصغریان رضایی and Mansoori, Amin and رعنا کلاهی اهری and سبحان محمودی and محمد رضا اسماعیلیان and Gordon Ferns and محمدرضا صابری and حبیب الله اسماعیلی and مجید غیور-مبرهن},
title = {A machine learning-based framework for predicting metabolic syndrome using serum liver function tests and high-sensitivity C-reactive protein},
journal = {Scientific Reports},
year = {2025},
volume = {15},
number = {1},
month = {July},
issn = {2045-2322},
keywords = {Metabolic syndrome; Liver function tests; High-sensitivity C-reactive protein (hs-CRP); Machine learning},
}

[Download]

%0 Journal Article
%T A machine learning-based framework for predicting metabolic syndrome using serum liver function tests and high-sensitivity C-reactive protein
%A بهاره بهمکال
%A فاطمه اصغریان رضایی
%A Mansoori, Amin
%A رعنا کلاهی اهری
%A سبحان محمودی
%A محمد رضا اسماعیلیان
%A Gordon Ferns
%A محمدرضا صابری
%A حبیب الله اسماعیلی
%A مجید غیور-مبرهن
%J Scientific Reports
%@ 2045-2322
%D 2025

[Download]