Journal of Health, Population and Nutrition, Volume (44), No (1), Year (2025-2)

Title : ( Nutritional intake of micronutrient and macronutrient and type 2 diabetes: machine learning schemes )

Authors: Mohammad Rashidmayvan , Amin Mansoori , Elahe Derakhshan-Nezhad , Davoud Tanbakuchi , Fatemeh Sangin , Maryam Mohammadi-Bajgiran , Malihehsadat Abedsaeidi , Sara Ghazizadeh , MohammadReza Mohammad Taghizadeh Sarabi , Ali Rezaee , Gordon Ferns , Habibollah Esmaily , Majid Ghayour-Mobarhan ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Background Diabetes mellitus, an endocrine system disease, is a common disease involving many patients worldwide. Many studies are performed to evaluate the correlation between micronutrients/macronutrients on diabetes but few of them have a high statistical population and a long follow-up period. We aimed to investigate the relationship between intake of macro/micronutrients and the incidence of type 2 diabetes (T2D) using logistic regression (LR) and a decision tree (DT) algorithm for machine learning. Method Our research explores supervised machine learning models to identify T2D patients using the Mashhad Cohort Study dataset. The study population comprised 9704 individuals aged 35–65 years were enrolled regarding their T2D status, and those with T2D history. 15% of individuals are diabetic and 85% of them are non-diabetic. For ten years (until 2020), the participants in the study were monitored to determine the incidence of T2D. LR is a statistical model applied in dichotomous response variable modeling. All data were analyzed by SPSS (Version 22) and SAS JMP software. Result Nutritional intake in the T2D group showed that potassium, calcium, magnesium, zinc, iodine, carotene, vitamin D, tryptophan, and vitamin B12 had an inverse correlation with the incidence of diabetes (p < 0.05). While phosphate, iron, and chloride had a positive relationship with the risk of T2D (p < 0.05). Also, the T2D group significantly had higher carbohydrate and protein intake (p-value < 0.05). Conclusion Machine learning models can identify T2D risk using questionnaires and blood samples. These have implications for electronic health records that can be explored further.

Keywords

, Data mining, Diabetes, Macro/Micronutrients, Decision tree
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1103638,
author = {محمد رشید مایوان and Mansoori, Amin and الهه درخشان نژاد and داوود تنباکوچی and فاطمه سنگین and مریم محمدی باجگیران and ملیحه سادات عابد سعیدی and سارا قاضی زاده and محمدرضا محمد تقی زاده سرابی and علی رضایی and Gordon Ferns and حبیب الله اسماعیلی and مجید غیور-مبرهن},
title = {Nutritional intake of micronutrient and macronutrient and type 2 diabetes: machine learning schemes},
journal = {Journal of Health, Population and Nutrition},
year = {2025},
volume = {44},
number = {1},
month = {February},
issn = {2072-1315},
keywords = {Data mining; Diabetes; Macro/Micronutrients; Decision tree},
}

[Download]

%0 Journal Article
%T Nutritional intake of micronutrient and macronutrient and type 2 diabetes: machine learning schemes
%A محمد رشید مایوان
%A Mansoori, Amin
%A الهه درخشان نژاد
%A داوود تنباکوچی
%A فاطمه سنگین
%A مریم محمدی باجگیران
%A ملیحه سادات عابد سعیدی
%A سارا قاضی زاده
%A محمدرضا محمد تقی زاده سرابی
%A علی رضایی
%A Gordon Ferns
%A حبیب الله اسماعیلی
%A مجید غیور-مبرهن
%J Journal of Health, Population and Nutrition
%@ 2072-1315
%D 2025

[Download]