Artery Research, Volume (31), No (1), Year (2025-10)

Title : ( Machine Learning-Based Predictive Modeling of Factors Associated with Low HDL-C Levels: Insights from a Large-Scale Cohort Study )

Authors: Amin Mansoori , Mina Nosrati , Mina Nosrati , Mina Nosrati , Bahareh Behkamal , Susan Darroudi , Amin Mansoori , Niloofar Nateghi , Sara Saffar Soflaei , Bahram Shahri , Hedieh Alimi , Habibollah Esmaily , Gordon A Ferns , Majid Ghayour-Mobarhan , Mohsen Moohebati , Mohammad Reza Saberi ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Introduction Our study applies machine learning methods to identify determinants of low–high-density lipoprotein cholesterol (HDL-C) in northeastern Iran. Clarifying these risk factors may support earlier diagnosis and treatment of cardiovascular disease (CVD) and inform timely prevention strategies. Methods This analytic cross-sectional study used baseline data from the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) cohort to develop predictive models of factors associated with low HDL-C. Participants were stratified into two groups based on HDL-C cut-off values: 40 mg/dL for men and 50 mg/dL for women. Our objective was to construct and evaluate predictive models to identify key factors associated with low HDL-C using Logistic Regression (LR), Decision Tree (DT), and Bootstrap Forest (BF). Results Among the 7526 participants assessed, 4842 (64.3%) were identified with low HDL-C levels. Logistic regression analysis demonstrated that physical activity level (PAL) was the most influential determinant, followed by sex and hip circumference. In parallel, the Bootstrap Forest model underscored mid-upper arm circumference and demi-span as the principal predictors of HDL-C status. Conclusion PAL, sex, hip circumference, mid-upper arm circumference, and demi-span emerged as potential predictors of HDL-C levels. Moreover, DT and BF models demonstrated robust capabilities in constructing predictive models for HDL-C-related factors.

Keywords

, Lipoproteins, Machine Learning, Predictive medicine, Predictive markers, Risk Factors, Restriction factors
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1104837,
author = {Mansoori, Amin and مینا نصرتی and مینا نصرتی and مینا نصرتی and بهاره بهکمال and سوسن درودی and Mansoori, Amin and نیلوفر ناطقی and سارا صفار سفلایی and بهرام شهری and هدیه علیمی and حبیب الله اسماعیلی and Gordon A Ferns and مجید غیور مبرهن and محسن موهبتی and محمدرضا صابری},
title = {Machine Learning-Based Predictive Modeling of Factors Associated with Low HDL-C Levels: Insights from a Large-Scale Cohort Study},
journal = {Artery Research},
year = {2025},
volume = {31},
number = {1},
month = {October},
issn = {1872-9312},
keywords = {Lipoproteins; Machine Learning; Predictive medicine; Predictive markers; Risk Factors; Restriction factors},
}

[Download]

%0 Journal Article
%T Machine Learning-Based Predictive Modeling of Factors Associated with Low HDL-C Levels: Insights from a Large-Scale Cohort Study
%A Mansoori, Amin
%A مینا نصرتی
%A مینا نصرتی
%A مینا نصرتی
%A بهاره بهکمال
%A سوسن درودی
%A Mansoori, Amin
%A نیلوفر ناطقی
%A سارا صفار سفلایی
%A بهرام شهری
%A هدیه علیمی
%A حبیب الله اسماعیلی
%A Gordon A Ferns
%A مجید غیور مبرهن
%A محسن موهبتی
%A محمدرضا صابری
%J Artery Research
%@ 1872-9312
%D 2025

[Download]