Title : ( Revisiting Quantum Chernoff Bound and Perspective Functions )
Authors: Mohsen Kian , Trung Hoa Dinh , Mohammad Sal Moslehian , Hiroyuki Osaka ,Access to full-text not allowed by authors
Abstract
Relating to finding possible upper bounds for the probability of error for discriminating between two quantum states, it is well-known that holds for every positive-valued matrix monotone function f, where , and all positive definite matrices A and B. In this paper, we study a new class of functions that satisfy the aforementioned inequality. As a consequence, we introduce a new quantum Chernoff bound. In addition, we characterize matrix decreasing functions and establish matrix Powers–Størmer type inequalities for perspective functions.
Keywords
Functions of a Complex Variable Linear Algebra Quantum Physics Real Functions Special Functions Functional Analysis@article{paperid:1104950,
author = {محسن کیان and ترونگ هوا دین and Sal Moslehian, Mohammad and هیرویوکی ازاکا},
title = {Revisiting Quantum Chernoff Bound and Perspective Functions},
journal = {International Journal of Theoretical Physics},
year = {2025},
volume = {64},
number = {11},
month = {November},
issn = {0020-7748},
keywords = {Functions of a Complex Variable
Linear Algebra
Quantum Physics
Real Functions
Special Functions
Functional Analysis},
}
%0 Journal Article
%T Revisiting Quantum Chernoff Bound and Perspective Functions
%A محسن کیان
%A ترونگ هوا دین
%A Sal Moslehian, Mohammad
%A هیرویوکی ازاکا
%J International Journal of Theoretical Physics
%@ 0020-7748
%D 2025
دانلود فایل برای اعضای دانشگاه