ICASSP2007, IEEE International InProceedings on Acoustics, Speech, and Signal Processing , 2007-01-01

Title : ( QR Decomposition-Based Algorithm for Background Subtraction )

Authors: Mahmood Amintoosi , Farzam Farbiz , Mahmood Fathy , Morteza Analoui , Nasser Mozayani ,

Citation: BibTeX | EndNote

Abstract

This paper presents a new algorithm for background subtraction that can model the background image from a sequence of images, even if there are foreground objects in each image frame. In contrast with Gaussian Mixture Model algorithm, in our proposed method the problem of distinguishing between background and foreground kernels becomes trivial. The key idea of our method lies in the identification of the background based on QRDecomposition method in linear algebra. R-values taken from QRDecomposition can be applied to decompose a given system to indicate the degree of the significance of the decomposed parts. We split the image into small blocks and select the background blocks with the weakest contribution, according to the assigned Rvalues. Simulation results show the better background detection performance with respect to some others.

Keywords

, Image processing, Matrix decomposition, Linear algebra, Image segmentation, Object detection
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@inproceedings{paperid:1106577,
author = {Amintoosi, Mahmood and فرزام فربیز and محمود فتحی and مرتضی آنالوئی and ناصر مزینی},
title = {QR Decomposition-Based Algorithm for Background Subtraction},
booktitle = {ICASSP2007, IEEE International InProceedings on Acoustics, Speech, and Signal Processing},
year = {2007},
location = {تهران, USA},
keywords = {Image processing; Matrix decomposition; Linear algebra; Image segmentation; Object detection},
}

[Download]

%0 Conference Proceedings
%T QR Decomposition-Based Algorithm for Background Subtraction
%A Amintoosi, Mahmood
%A فرزام فربیز
%A محمود فتحی
%A مرتضی آنالوئی
%A ناصر مزینی
%J ICASSP2007, IEEE International InProceedings on Acoustics, Speech, and Signal Processing
%D 2007

[Download]