Title : Some Baer invariants of free nilpotent groups ( Some Baer invariants of free nilpotent groups )
Authors: Behrooz Mashayekhy Fard , Mohsen Parvizi ,Access to full-text not allowed by authors
Abstract
We present an explicit structure for the Baer invariant of a free $n$th nilpotent group (the $n$th nilpotent product of infinite cyclic groups, $\\textbf{ Z}\\st{n}* \\textbf{ Z}\\st{n}*\\ldots \\st{n}*\\textbf{ Z}$) with respect to the variety ${\\cal V}$ with the set of words $V=\\{[\\ga_{c_1+1},\\ga_{c_2+1}]\\}$, for all $c_1\\geq c_2$ and $2c_2-c_1>2n-2$. Also, an explicit formula for the polynilpotent multiplier of a free $n$th nilpotent group is given for any class row $(c_1,c_2,\\ldots,c_t)$, where $c_1\\geq n$.
We present an explicit structure for the Baer invariant of a free $n$th nilpotent group (the $n$th nilpotent product of infinite cyclic groups, $\\textbf{ Z}\\st{n}* \\textbf{ Z}\\st{n}*\\ldots \\st{n}*\\textbf{ Z}$) with respect to the variety ${\\cal V}$ with the set of words $V=\\{[\\ga_{c_1+1},\\ga_{c_2+1}]\\}$, for all $c_1\\geq c_2$ and $2c_2-c_1>2n-2$. Also, an explicit formula for the polynilpotent multiplier of a free $n$th nilpotent group is given for any class row $(c_1,c_2,\\ldots,c_t)$, where $c_1\\geq n$.
Keywords
Baer invariant; Free nilpotent group; Nilpotent product; Polynilpotent variety.@article{paperid:203837,
author = {Mashayekhy Fard, Behrooz and Parvizi, Mohsen},
title = {Some Baer invariants of free nilpotent groups},
journal = {Journal of Algebra},
year = {2007},
volume = {317},
number = {1},
month = {March},
issn = {0021-8693},
pages = {365--375},
numpages = {10},
keywords = {Baer invariant; Free nilpotent
group; Nilpotent product; Polynilpotent variety.},
}
%0 Journal Article
%T Some Baer invariants of free nilpotent groups
%A Mashayekhy Fard, Behrooz
%A Parvizi, Mohsen
%J Journal of Algebra
%@ 0021-8693
%D 2007