Chinese Journal of Catalysis, ( ISI ), Volume (33), No (2), Year (2012-2) , Pages (494-501)

Title : ( Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology )

Authors: Ali Hafizi , Ali Ahmadpour , M. M. Heravi , F. F. Bamoharram , M. Khosroshahi ,

Citation: BibTeX | EndNote

Abstract

The response surface method (RSM) was applied to study the liquid phase alkylation of benzene with 1-decene catalyzed by means of silica supported Preyssler heteropoly acid. A three step experimental design was developed based on the central composite design (CCD). Catalyst loading, catalyst mass percent, and benzene to 1-decene molar ratio were used to optimize 1-decene conversion and linear alkylbenzene (LAB) yield. The results indicated that the quadratic model was significant for these two responses. The experimental results revealed that all variables had positive effect on 1-decene conversion. While increasing the catalyst loading tends to decrease LAB yield. Benzene to 1-decene molar ratio was found to be the most important factor that influenced LAB yield with a positive effect. Design expert software suggested several optimized solutions, among them the best choice was to use 31% catalyst loading, benzene to 1-decene molar ratio of 13, and catalyst percent of 3.6 wt% for obtaining 100% conversion and 88% LAB production yield.

Keywords

linear alkylbenzene; heteropoly acid; Preyssler; silica; supported catalyst; response surface method
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1032427,
author = {Hafizi, Ali and Ahmadpour, Ali and M. M. Heravi and F. F. Bamoharram and M. Khosroshahi},
title = {Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology},
journal = {Chinese Journal of Catalysis},
year = {2012},
volume = {33},
number = {2},
month = {February},
issn = {0253-9837},
pages = {494--501},
numpages = {7},
keywords = {linear alkylbenzene; heteropoly acid; Preyssler; silica; supported catalyst; response surface method},
}

[Download]

%0 Journal Article
%T Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology
%A Hafizi, Ali
%A Ahmadpour, Ali
%A M. M. Heravi
%A F. F. Bamoharram
%A M. Khosroshahi
%J Chinese Journal of Catalysis
%@ 0253-9837
%D 2012

[Download]