کنفرانس ملی فن آوری، انرژی و داده با رویکرد مهندسی برق و کامپیوتر , 2015-05-27

Title : ( Principle of stochastic optimization based on statistical estimation )

Authors: Mohammad Reza Akbarzadeh Totonchi , ALIREZA BEMANI NAEINI ,

Citation: BibTeX | EndNote

Abstract

This paper represents the principle of stochastic optimization and clarifies the rule of probability density function estimation in probabilistic optimization methods. Because of stochastic nature being in renewable energy power sources, during recent years, mentioned method has frequently and effectively been used and considered in several experimental sectors like renewable and hybrid power generation systems. Meanwhile, it describes and compares analytical, Monte Carlo simulation, point estimation and two-point estimation methods to estimate probability density functions. Several simulation results have been represented to clarify the offered concept. Finally, mentioned methods are implemented on a stochastic GA problem and the simulation results have been represented and compared.

Keywords

, Stochastic optimization, genetic algorithm (GA), Monte-Carlo simulation, point estimation, two-point estimation, wind power generation, solar power generation, hybrid power generation.
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@inproceedings{paperid:1049954,
author = {Akbarzadeh Totonchi, Mohammad Reza and BEMANI NAEINI, ALIREZA},
title = {Principle of stochastic optimization based on statistical estimation},
booktitle = {کنفرانس ملی فن آوری، انرژی و داده با رویکرد مهندسی برق و کامپیوتر},
year = {2015},
location = {کرمانشاه, IRAN},
keywords = {Stochastic optimization; genetic algorithm (GA); Monte-Carlo simulation; point estimation; two-point estimation; wind power generation; solar power generation; hybrid power generation.},
}

[Download]

%0 Conference Proceedings
%T Principle of stochastic optimization based on statistical estimation
%A Akbarzadeh Totonchi, Mohammad Reza
%A BEMANI NAEINI, ALIREZA
%J کنفرانس ملی فن آوری، انرژی و داده با رویکرد مهندسی برق و کامپیوتر
%D 2015

[Download]