Title : ( Observer-based adaptive neural control for switched stochastic pure-feedback systems with input saturation )
Authors: Zahra Namadchian , Modjtaba Rouhani ,Access to full-text not allowed by authors
Abstract
The purpose of this paper is to investigate the problem of adaptive neural network (NN) output-feedback tracking control for input saturated switched stochastic nonlinear systems in pure-feedback form with unmeasured states. In order to facilitate the controller design process, a dead zone-based model of saturation is implemented and radial basis function NNs (RBFNNs) are employed to approximate unknown nonlinear functions and to construct an NN switched nonlinear observer to cope with difficulties raised by the presence of immeasurable state variables. Based on the adaptive backstepping technique and Lyapunov function method, an adaptive NN output feedback control scheme is developed. Furthermore, it is proved that the proposed controller can provide that, under arbitrary deterministic switching, all signals in the closed-loop system are semiglobally uniformly ultimately bounded in probability and the tracking error converges to a small neighborhood of the origin. Finally, simulation examples are presented to validate the effectiveness of the proposed adaptive NN control approach.
Keywords
, input saturation, Adaptive neural control, output-feedback control, switched nonlinear systems, stochastic pure feedback system.@article{paperid:1075922,
author = {Zahra Namadchian and Rouhani, Modjtaba},
title = {Observer-based adaptive neural control for switched stochastic pure-feedback systems with input saturation},
journal = {Neurocomputing},
year = {2020},
volume = {375},
month = {January},
issn = {0925-2312},
pages = {80--90},
numpages = {10},
keywords = {input saturation; Adaptive neural control; output-feedback control; switched nonlinear systems; stochastic pure feedback system.},
}
%0 Journal Article
%T Observer-based adaptive neural control for switched stochastic pure-feedback systems with input saturation
%A Zahra Namadchian
%A Rouhani, Modjtaba
%J Neurocomputing
%@ 0925-2312
%D 2020