Computational and Applied Mathematics, Volume (43), No (6), Year (2024-8)

Title : ( Local edge metric dimensions via corona products and integer linear programming )

Authors: Fateme Amini , Michael A. Henning , Mostafa Tavakoli ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Let G be a connected graph. The distance between two vertices u and v in G, denoted by dG(u, v), is the number of edges in a shortest path from u to v, while the distance between an edge e = xy and a vertex v in G is dG(e, v) = min{dG(x, v), dG(y, v)}. For an edge e ∈ E(G) and a subset S of V (G), the representation of e with respect to S = {x1, . . . , xk} is the vector rG(e|S) = (d1, . . . , dk), where di = dG(e, xi) for i ∈ [k]. If rG(e|S) = rG( f |S) for every two adjacent edges e and f of G, then S is called a local edge metric generator for G. The local edge metric dimension of G, denoted by edim(G), is the minimum cardinality among all local edge metric generators in G. For two non-trivial graphs G and H, we determine edim(G H) in the edge corona product G H and we determine edim(G ◦ H) in the corona product G H. We also formulate the problem of computing edim(G) as an integer linear programming model

Keywords

Metric dimension · Local edge metric dimension · Corona product · Edge corona product · Integer linear programming
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1099573,
author = {Amini, Fateme and مایکل هنینگ and Tavakoli, Mostafa},
title = {Local edge metric dimensions via corona products and integer linear programming},
journal = {Computational and Applied Mathematics},
year = {2024},
volume = {43},
number = {6},
month = {August},
issn = {2238-3603},
keywords = {Metric dimension · Local edge metric dimension · Corona product · Edge corona product · Integer linear programming},
}

[Download]

%0 Journal Article
%T Local edge metric dimensions via corona products and integer linear programming
%A Amini, Fateme
%A مایکل هنینگ
%A Tavakoli, Mostafa
%J Computational and Applied Mathematics
%@ 2238-3603
%D 2024

[Download]