Title : ( THREE ALGORITHMIC APPROACHES TO THE GENERAL POSITION PROBLEM )
Authors: Zahra Hamed Labbafian , Sabeghi , Mostafa Tavakoli , Sandi Klavzar ,Access to full-text not allowed by authors
Abstract
If $G$ is a graph, then $X\\\\subseteq V(G)$ is a general position set if for every two vertices $v,u\\\\in X$ and every shortest $(u,v)$-path $P$, it holds that no inner vertex of $P$ lies in $X$. In this note we propose three algorithms to compute a largest general position set in $G$: an integer linear programming algorithm, a genetic algorithm, and a simulated annealing algorithm. These approaches are supported by examples from different areas of graph theory.
Keywords
general position set; general position number; integer linear programming; genetic algorithm; simulated annealing algorithm.@article{paperid:1103577,
author = {Hamed Labbafian, Zahra and نرجس سابقی and Tavakoli, Mostafa and سندی کلاوژار},
title = {THREE ALGORITHMIC APPROACHES TO THE GENERAL POSITION PROBLEM},
journal = {Bulletin of Australian Mathematical Society},
year = {2025},
month = {July},
issn = {0004-9727},
keywords = {general position set; general position number; integer linear programming; genetic algorithm; simulated annealing algorithm.},
}
%0 Journal Article
%T THREE ALGORITHMIC APPROACHES TO THE GENERAL POSITION PROBLEM
%A Hamed Labbafian, Zahra
%A نرجس سابقی
%A Tavakoli, Mostafa
%A سندی کلاوژار
%J Bulletin of Australian Mathematical Society
%@ 0004-9727
%D 2025