Linear and Multilinear Algebra, ( ISI ), Volume (73), No (8), Year (2025-5) , Pages (1792-1803)

Title : ( A quadratic operator equation and a non-commutative uncertainty relation )

Authors: Fateme Abdollahzade , Hamed Najafi ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

‎In this paper‎, ‎we explore equivalent conditions for the positivity of a quadratic equation $\\\\\\\\textbf{P}(x) = Ax^2‎ + ‎Bx‎ + ‎C$ with operator coefficients‎. ‎Specifically‎, ‎we show that $Ax^2‎ + ‎2Bx‎ + ‎C \\\\\\\\geq 0$ for all $x \\\\\\\\in \\\\\\\\mathbb{R}$ if and only if $A‎, ‎C \\\\\\\\geq 0$‎, ‎$B = B^*$‎, ‎and there exists a self-adjoint operator $H$ such that‎ ‎$$\\\\\\\\begin{bmatrix} A+C+H & B+i(A-C) \\\\\\\\\\\\\\\\ B-i(A-C) & A+C-H \\\\\\\\end{bmatrix}\\\\\\\\geq 0.$$‎

Keywords

quadratic equation; geometric mean; numerical range
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1103761,
author = {Abdollahzade, Fateme and Najafi, Hamed},
title = {A quadratic operator equation and a non-commutative uncertainty relation},
journal = {Linear and Multilinear Algebra},
year = {2025},
volume = {73},
number = {8},
month = {May},
issn = {0308-1087},
pages = {1792--1803},
numpages = {11},
keywords = {quadratic equation; geometric mean; numerical range},
}

[Download]

%0 Journal Article
%T A quadratic operator equation and a non-commutative uncertainty relation
%A Abdollahzade, Fateme
%A Najafi, Hamed
%J Linear and Multilinear Algebra
%@ 0308-1087
%D 2025

[Download]