Journal of Nonlinear Science, Volume (35), No (5), Year (2025-8)

Title : ( Kink Dynamics in a High-Order Field Model )

Authors: Aliakbar Moradi Marjaneh , Vakhid A. Gani , Azam Ghaani , Kurosh Javidan , Alexander A. Malnev , Oleg V. Nagornov ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

We study various properties of topological solitons (kinks) of a field-theoretic model with a polynomial potential of the twelfth degree. This model is remarkable in that it has several topological sectors, in which kinks have different masses. We obtain an asymptotic estimate for the kink–antikink and antikink–kink interaction forces. We also study numerically kink–antikink and antikink–kink collisions and observe a number of interesting phenomena: annihilation of a kink–antikink pair in one topological sector and the production in its place of a pair in another sector; resonance phenomena, escape windows, despite the absence of vibrational modes in the kink excitation spectra.

Keywords

, Nonlinear or nonlocal theories and models · Extended classical solutions; cosmic strings, domain walls, texture · Solitons · Numerical simulation; solution of equations · Partial differential equations · Classical field theories
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1104007,
author = {علی اکبر مرادی مرجانه and وخید قانی and Ghaani, Azam and Javidan, Kurosh and آلکساندر مالنف and اولگ ناگورنوف},
title = {Kink Dynamics in a High-Order Field Model},
journal = {Journal of Nonlinear Science},
year = {2025},
volume = {35},
number = {5},
month = {August},
issn = {0938-8974},
keywords = {Nonlinear or nonlocal theories and models · Extended classical solutions; cosmic strings; domain walls; texture · Solitons · Numerical simulation; solution of equations · Partial differential equations · Classical field theories},
}

[Download]

%0 Journal Article
%T Kink Dynamics in a High-Order Field Model
%A علی اکبر مرادی مرجانه
%A وخید قانی
%A Ghaani, Azam
%A Javidan, Kurosh
%A آلکساندر مالنف
%A اولگ ناگورنوف
%J Journal of Nonlinear Science
%@ 0938-8974
%D 2025

[Download]