Title : ( A Note On The Stahl’s Theorem )
Authors: Hamed Najafi ,Abstract
Let $\mathcal{H}$ be a Hilbert space and $\mathbb{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on $\mathcal{H}$ and $A$ be a bounden operator in $\mathcal{H}$. Let $A,B\in\mathbb{B}(\mathcal{H})$ be positive operators and $\Phi$ be a positive linear functional on $\mathbb{B}(\mathcal{H})$. We show that, if $f$ is a non-negative operator decreasing function, then the function $t\rightarrow \Phi\left(f(A+tB)\right)$ can be written as a Laplace transform of a positive measure.
Keywords
, BMV conjecture, Laplace transform, Operator monotone functions.@inproceedings{paperid:1063635,
author = {Najafi, Hamed},
title = {A Note On The Stahl’s Theorem},
booktitle = {پنچمین سمینار آنالیز هارمونیک و کاربردها},
year = {2017},
location = {مشهد, IRAN},
keywords = {BMV conjecture; Laplace transform; Operator monotone functions.},
}
%0 Conference Proceedings
%T A Note On The Stahl’s Theorem
%A Najafi, Hamed
%J پنچمین سمینار آنالیز هارمونیک و کاربردها
%D 2017