Title : ( POSITIVE BLOCK MATRICES )
Authors: Hamed Najafi ,Abstract
Let $C$ and $D$ be positive operators such that $C\leq D$ and $D$ be invertible. We show that there exists a trace preserving unital completely positive map $\Phi_{C,D}:\mathbb{B}(\mathcal{H})\rightarrow \mathbb{B}(\mathcal{H})$ such that the block operator matrices \begin{equation*} \left( \begin{array}{cc} \Phi_{C,D}(A) & C \\ C & \Phi_{C,D}(B) \\ \end{array} \right) \end{equation*} are positive, for all positive operators $A$ and $B$ such that $D=A\sharp B$.
Keywords
, Geometric mean, Positive block matrix, Completely positive linear map.@inproceedings{paperid:1063636,
author = {Najafi, Hamed},
title = {POSITIVE BLOCK MATRICES},
booktitle = {سومین سمینار نظریه عملگرها و کاربردهای آن},
year = {2017},
location = {مشهد, IRAN},
keywords = {Geometric mean; Positive block matrix; Completely positive linear map.},
}
%0 Conference Proceedings
%T POSITIVE BLOCK MATRICES
%A Najafi, Hamed
%J سومین سمینار نظریه عملگرها و کاربردهای آن
%D 2017