فناوری های جدید در صنعت غذا, Year (2025-8)

Title : ( تزیه و تحلیل تقلبات در ادویه دارچین با استفاده از طیف‌سنی: تأثیر پیش‌پردازش داده‌ها بر مدل‌های پیش‌بینی چندمتغیره )

Authors: mohammad masudee , Rasool Khodabakhshian kargar , Mahmood Reza Golzarian ,

Citation: BibTeX | EndNote

Abstract

Detecting fraud in the cinnamon supply chain is critical for ensuring consumer safety and maintaining product integrity. Recent advances in spectral data preprocessing techniques offer enhanced accuracy in identifying adulterants in spices like cinnamon. This study investigates the impact of different spectral preprocessing techniques on predicting adulterants—specifically soybean powder, hazelnut shell powder, and dry bread powder—mixed with cinnamon powder using spectroscopy combined with multivariate analysis. The transmittance spectra were collected across the mid-infrared range of 2–4000 cm⁻¹, and Partial Least Squares Regression (PLSR) was employed to model the adulteration levels based on these spectra. Various preprocessing methods were applied to optimize the spectral data. Among them, orthogonal signal correction (OSC) combined with detrending yielded the highest predictive accuracy, with a coefficient of prediction (R²p) ranging from 0.900 to 0.981. Conversely, Extended Multiplicative Scatter Correction (EMSC) and Savitzky-Golay second derivative (D ) were less effective, with R²p values between 0.115 and 0.931. Soybean powder was the easiest adulterant to detect, with a prediction error range of 5–10%. These findings underscore the importance of selecting appropriate preprocessing techniques to improve the accuracy of fraud detection in cinnamon powder using spectroscopic methods.

Keywords

, Adulterants, Chemometrics, Data Preprocessing, Food Safety, Spectral Analysis.
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1104041,
author = {Masudee, Mohammad and Khodabakhshian Kargar, Rasool and محمود رضا گلزاریان},
title = {تزیه و تحلیل تقلبات در ادویه دارچین با استفاده از طیف‌سنی: تأثیر پیش‌پردازش داده‌ها بر مدل‌های پیش‌بینی چندمتغیره},
journal = {فناوری های جدید در صنعت غذا},
year = {2025},
month = {August},
issn = {2783-350X},
keywords = {Adulterants; Chemometrics; Data Preprocessing; Food Safety; Spectral Analysis.},
}

[Download]

%0 Journal Article
%T تزیه و تحلیل تقلبات در ادویه دارچین با استفاده از طیف‌سنی: تأثیر پیش‌پردازش داده‌ها بر مدل‌های پیش‌بینی چندمتغیره
%A Masudee, Mohammad
%A Khodabakhshian Kargar, Rasool
%A محمود رضا گلزاریان
%J فناوری های جدید در صنعت غذا
%@ 2783-350X
%D 2025

[Download]